Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans

نویسندگان

  • Heikki Rauvala
  • Mikhail Paveliev
  • Juha Kuja-Panula
  • Natalia Kulesskaya
چکیده

The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans (CSPGs) inhibit plasticity and regeneration in the adult central nervous system (CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule (HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate (CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma (PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of function-regulating antibodies targeting the receptor protein tyrosine phosphatase sigma ectodomain

Receptor tyrosine phosphatase sigma (RPTPσ) plays an important role in the regulation of axonal outgrowth and neural regeneration. Recent studies have identified two RPTPσ ligands, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPG), which can modulate RPTPσ activity by affecting its dimerization status. Here, we developed a split luciferase assay to monitor RPTPσ...

متن کامل

Effect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury

Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...

متن کامل

Neuronal growth cones and regeneration: gridlock within the extracellular matrix

The extracellular matrix is a diverse composition of glycoproteins and proteoglycans found in all cellular systems. The extracellular matrix, abundant in the mammalian central nervous system, is temporally and spatially regulated and is a dynamic "living" entity that is reshaped and redesigned on a continuous basis in response to changing needs. Some modifications are adaptive and some are mala...

متن کامل

Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture

As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sulfate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growt...

متن کامل

Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC.

After injury to the mammalian central nervous system (CNS), neurons are not able to regenerate their axons and recovery is limited by restricted plasticity. Axon regeneration is inhibited by the presence of the various inhibitory molecules, including chondroitin sulfate proteoglycans (CSPGs) which are upregulated around the injury site. Plasticity after the end of critical periods is restricted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017